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Relations are derived for the change in thermistor temperature with
pulsed changes in ambient temperature and dissipation factor for

small deviations of circuit current.
are examined:

Three main types of input pulses
square, triangular, and exponential.

In recent years pulse technology has been increas-
ingly introduced into automatic control systems. Ac-
cordingly, it is a matter of some interest to study
pulse regimes in circuits with thermistors, which
are often used as components of such systems. Since
the thermistor can be used to register both tempera-
ture and the parameters affecting the heat transfer
coefficient, the ambient temperature and the dissipa-
tion factor were taken as input quantities. All the cal-
culations were made for small variations of the cur-
rent in the circuit under the action of an unmodulated
sequence of square, triangular or exponential pulses
(Fig. 1). The pulse sequence can be characterized
(Fig. 1) by the pulse amplitude, repetition period,
off-duty factor [1]
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and amplification factor
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The quantity x in (1) represents the value of the input
quantity at a discrete moment of time, The analysis

of pulse systems usually reduces to a calculation of
transients, i.e., to a determination of the output quan-
tity as a function of time z(t). The ratio of the trans-
form of the input to the transform of the output
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is the transfer function of an open pulse-amplitude
system, In expression (2)
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is the transformation parameter, which is introduced
on going over to relative time values t=t/7.

We recall that any pulse-amplitude system can be
reduced to a pulse system consisting of a simple pulse
element, a shaping element and a continuous part.

The transfer function of a system with arbitrary
pulse shape is given by the following equations [1]:
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Fig. 1. Pulse shapes: a) square, b) tri-
angular, c) exponential, d) exponential
sawtooth, e) linear sawtooth,

In (4a), (4b)
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is the shape of the pulse at the pulse element output

when 7= kj, and
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If we assume that the input variable is discontinuous,
the transform of the corresponding lattice function [1]
will be
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Here x, is the value of the jump at the input of the sim-
ple pulse element. According to (2) and (7),
Z¥ (g, ¢) = K¥(q, €) x,29'(ef — 1). (8)

if the shaping element produces a sequence of
square pulses, the inverse transform of the output
variable is [1]
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Since the literature lacks expressions K*(g, &) and
7Z*(q, &) for triangular and exponential pulse shapes
(Fig. 1b, ¢), we obtained them on the basis of expres-
sions (4a), (4b), and (8). To-convert from the trans-
form of a function to the original we used the relations
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The shape of the triangular pulses is described by
the expressions
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0, y<Le< 1.

The shape of the exponential pulses
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In determining the transforms of the transfer func-
tions for triangular and exponential pulse sequences
we took into account the fact that the transform of a
composgite function is the sum of the transforms of the
individual parts of this function with the same law [2].
Without dwelling on the details of the derivation, we
present the final solutions for the inverse transforms
of the output-variables of the pulse systems,

For a triangular pulse sequence (11)
when 0 < & < /2
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In these expressions
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The output variables for systems whose shaping
element produces pulses of exponential shape are
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Fig. 2. Change of temperature of KMT-14 thermistor,

degrees, for a sequence of square (a), triangular (b),

and exponential (¢c) pulses of ambient temperature (ther-

mistor and circuit parameters: Ry = 71 kohm, R =

= 1350 ohms, D=2,93, 6 = 0,15, 7e¢ = 4.84 sec, am-

plitude of change ATy = 10°C, 7=2 sec, y=0.5, ¢4 =
=1): 1) ATy; 2) AT; 3) ATmaxs 4) ATmin-
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The above expressions for the output variables are
valid for linear systems, Since for small current var-
iations a thermistor circuit can be represented in the
form of a linear equivalent circuit [3—5], expressions
(13) and (15) can be used to calculate transients in such
circuits.

Pulsed variation of ambient temperature. Let the
thermistor be connected in series with a linear re-
sistance (R — R circuit), We assume that Ug = const,
R = const, and k = const, For small current devia-
tions in the general case the dissipated power will be

AP, — E(AT —AT,) —(Ty — T)AE.

(16)
In our case (16) assumes the form
APa=k(AT—«ATO)_ (1)

The current increment for U = const, with allowance
for the fact that ARp = apRTAT, is equal to [4, 5]
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(R+ R} (R+ R}

AT. (18)

Since with variation Al of the current the increment
AP in the power supplied to the thermistor has the
form

AP, =2, Al + PAR, (19a)

and, on the other hand,

APT:APQ+CL’pAT’ (19b)

using (17) and (18) we find the transfer function of the
thermistor circuit:

AT (p)/A Ty (p) = Kn(p) = [(1ep - D)(1 — D )17 = Pp(p)/Qn(p).

The value of the transfer function expressed in terms
of the transformation parameter (3) will be

Ky(9) = Ba/(q -+ 1) (1 — D 8) = P(9)/Qn(9),

where 8y = 7/7¢.

Setting Qn(q) equal to zero, we get the unique root
dipn = —B;. On the basis of (6), (10), and (14) we deter-
mine the coefficients:
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Using (9), (20), and (21), we write the final rela~
tions for the change in thermistor temperature in the
case of a sequence of square pulses, takingk; =1
(.e., xg= Ay =ATym):
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The maximum value of AT will be at & = v, and the
minimum value at € = 0. Substituting the correspond-
ing values in (23a), we get the equations of the en-
velopes [1]:

ATmax = AT[”, 'Y]’ ATmin = AT[”, 0]

Asn — «, the system enters a state of dynamic
equilibrium. Then the maximum and minimum values
of the change in thermistor temperature tend to con-
stant values:

ATmax,y = AT (oo, v} ATmin,y=AT [, 0l

It is easy to show {1] that a 5% difference from the
steady-state values of the envelopes is observed after
a number of repetition periods:

n> 3/3;.

The curves in Fig. 2a are based on the above for-
mulas.

In the case of a sequence of triangular pulses the
changes in thermistor temperature according to (13)
and (22) (at kj = 1) are equal to
when 0 = & < /2
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In using expressions (24) it is necessary to recall that
in Ai(y, v), As(y, v), and Az(y, v) instead of g, it is
necessary to substitute its value for the case in ques-
tion (4y = q4n = —fBy). Substituting e = yand € = 0 in
(24b), (24a), we get the equations of the envelopes for
the maximum and minimum values of the tempera-
tures, respectively.
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Relations (24) were used to construct the curves in (T, —T,) k;
- Cpn 7 -
Fig. 2b. * ky (1—Dg) (28)
For an cxponential pulse sequence the changes in
thermistor temperature based on (15) and (21) will be i (T, —T,) ki
i = 1): T T a=bay
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AT & = YA a e—av? euly 2= + sions for the changes of temperature for the various
T a(l —D§) L ) o g, — % ) pulse sequences. As before, ki =1 (i.e., X, = Am =
% = Akpy,). For square pulses:
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The curves in Fig. 2c¢ are hased on relations (25).
Pulsed variation of the dissipation factor, The dis- For triangular pulses:
sipation factor is proportional to the heat transfer co- when 0 < g = y/2
efficient [6]:
2 T,-—T Ak
X : AT(n, ¢} = ! 0 m o]
k=al. 61 k T {{J% )+
Thus, a change in dissipation factor is analogous - Ay, v)eBit — A, (yn) e~ eBilnth]
to a change in heat transfer conditions.
For the given case we shall take Ug = const, R = when y/2 < e =
= const, T, = const, For k = var expression (16) takes
the { o
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After substitution of (18), (19a), and (26) in (19b) and

certain transformations, we get the transfer function

- h <g=
of the circuit containing the thermistor: wheny =g =1
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where 3 = 7/7¢. The given function has onc root qyn =
= —. Using (6), (10), and (14), we get whenvy/2 =e=<vy
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If we take the ratio of changes of temperatufe due
to the action of pulses of ambient temperature and dis-
sipation factor as equal to unity, then, irrespective
of the shape of the pulse, we shall have the following
relation between the pulse amplitudes (provided that
Y, B, @, D and 6 are fixed):

ATy = le—lT" Akn. (31)

It follows from (31) that for the same amplitude
the action on the R — R circuit of a sequence of puls-
es of dissipation factor will cause a (Ty — Ty)/k; times
greater change in thermistor temperature than the ac-
tion of a sequence of ambient temperature pulses.

Using the equivalent circuit [5], it is easy to deter-
mine the transfer function for change in circuit volt-
age and apply all that has been said to the given case,

In conclusion, we note that the expressions obtained
can be used to calculate circuits with thermistors for
stepwise, sawtoothed (Fig. 1) and continuously grow-
ing (both linearly and exponentially) actions of the
above-examined parameters., For this it is sufficient
to take y =1, and, in addition, for continuously grow-
ing input variables n = 0,
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NOTATION

Am— pulse amplitude; 7— pulse repetition period; t;—puise length;
kj—amplification factor; e—real parameter (time); v—number of root
of equation; s(e)—pulse shape; n—number of pulse; P, — dissipated
power; k—dissipation factor; Ty—ambient temperature; Uq—circuit
voltage; ap—temperature coefficient of thermistor resistance; RT—
thermistor resistance; R—1linear resistance; Up—voltage drop across
thermistor; Cy~volume heat capacity of thermistor; Pp—power sup-
plied to thermistor; T, = Tg/(1 — D§)—time constant of electrical
circuit; T4 —thermistor thermal time constant; D = —aT(Pa/K) =
= (B/Tz)(T — Ty ~relative power sensitivity of thermistor; § = (R —
- R)/(RT + R)y—dimensionless circuit parameter characterizing power
supply regime; o —heat transfer coefficient; F—surface area of ther-
mistor; T-temperature of thermistor. The subscript m indicates the
maximum of the corresponding quantity, the subscript 1 on k and T
denotes values preceding the start of the transient process.
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